The generator matrix

 1  0  0  1  1  1  2 X^2  1  1  1  1  X X^2+X  1 X^2+X+2  1  1  1  1 X^2+X  1  1 X^2+2 X+2  1  1 X^2+2 X^2  X X+2  1  1
 0  1  0  0 X^2+3 X^2+3  1  X X^2  3 X^2+X+2 X+1  1  1  X X+2 X^2+1 X^2+X+2 X+3 X+3  1 X^2+2  2  1  1 X^2+X+3  1  1  1  2 X^2 X^2+1  0
 0  0  1 X+1 X^2+X+1 X^2 X^2+X+1  1  X X^2+1  1 X^2+X+2  3 X^2+X X+1  1 X^2+1 X^2+2  3 X^2 X^2+2 X^2+X+2  1 X^2+X X+3 X^2+3  X X^2 X+3  1  1 X+2  0
 0  0  0  2  2  0  2  2  2  0  0  2  0  2  2  0  2  2  0  2  0  0  0  0  2  0  0  2  0  2  0  2  0

generates a code of length 33 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 29.

Homogenous weight enumerator: w(x)=1x^0+184x^29+725x^30+1158x^31+1456x^32+1456x^33+1336x^34+890x^35+614x^36+220x^37+81x^38+46x^39+9x^40+12x^41+2x^42+2x^43

The gray image is a code over GF(2) with n=264, k=13 and d=116.
This code was found by Heurico 1.16 in 0.281 seconds.